Chapter 8 Number Theory

8-1 Prime Numbers and Composite Numbers

\boldsymbol{d} divides $\boldsymbol{n}, \boldsymbol{d} \mid \boldsymbol{n}: n=d q, d(\neq 0)$ is a divisor (factor) of n, and q is the quotient.
Eg. 2|6, 3|108, etc.

Theorem Let m, n, and d be integers. (a) If $d \mid m$ and $d \mid n$, then $d \mid(m \pm n)$. (b) If $d \mid m$, then $d \mid m n$.
(Proof) (a) $\because m=d q_{1}$ and $n=d q_{2}, \therefore m \pm n=d\left(q_{1} \pm q_{2}\right)$.
(b) $m=d q$, and then $m n=d n q$

Prime number: An integer greater than 1 whose only positive divisors are itself and 1.

Eg. $2=1 \times 2,3=1 \times 3,5=1 \times 5,7=1 \times 7,11=1 \times 11, \ldots$ are all prime numbers.

Composite number: An integer greater than 1 that is not prime.

Eg. $4=1 \times 4=2 \times 2$, it is a composite number.

Theorem A positive integer \boldsymbol{n} greater than $\mathbf{1}$ is composite if and only if \boldsymbol{n} has a divisor d satisfying $2 \leq d \leq \sqrt{n}$.
(Proof) (\Rightarrow) : Suppose that n is composite, n has a divisor d^{\prime} satisfying $2 \leq d^{\prime} \leq n$.
If $d^{\prime} \leq \sqrt{n}$, then n has a divisor $d=d^{\prime}$ ' satisfying $2 \leq d \leq \sqrt{n}$.
If $d^{\prime}>\sqrt{n}$, then $n=d^{\prime} q$, Thus q is also a divisor of n. Suppose that $q>\sqrt{n}$, then $n=d^{\prime} q>\sqrt{n} \cdot \sqrt{n}=n$, which is a contradiction. Thus $q<\sqrt{n}$. Therefore, n has a divisor $d=q$ satisfying $2 \leq d \leq \sqrt{n}$.
(\Leftarrow) : If n has a divisor d which satisfies $2 \leq d \leq \sqrt{n}$, according to the definition of composite number, n is composite.

Algorithm Testing whether an integer is prime
Input: n
Output: d
is_prime(n) \{
for $d=2$ to $\lfloor\sqrt{n}\rfloor$
if ($n \bmod d==0$) return d
return 0
\}

Theorem There are infinite prime numbers.
(Sol.) Assume there are only finite prime numbers: $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$.
Let $m=p_{1} p_{2} p_{3} \ldots p_{n}+1$, so m should be a composite number.
But m can not be factorized into the product of $p_{1}, p_{2}, p_{3}, \ldots$, and p_{n}. It should be a prime number. They are contradictory to each other.
Hence, there are infinite prime numbers.

8-2 GCD and LCM

The greatest common divisor (gcd): Let $m=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}$ and $n=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{n}^{b_{n}}$,
then $\operatorname{gcd}(m, n)=p_{1}{ }^{\min \left(a_{1}, b_{1}\right)} p_{2}{ }^{\min \left(a_{2}, b_{2}\right)} \cdots p_{n}{ }^{\min \left(a_{n}, b_{n}\right)}$.
Eg. $12=2^{2} \times 3,18=2 \times 3^{2}, \operatorname{gcd}(12,18)=2^{\min (2,1)} \times 3^{\min (1,2)}=2 \times 3=6$.

The least common multiple (Icm): Let $m=p_{1}{ }^{a_{1}} p_{2}{ }^{a_{2}} \cdots p_{n}{ }^{a_{n}}$ and $n=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{n}^{b_{n}}$, then $\operatorname{lcm}(m, n)=p_{1}{ }^{\max \left(a_{1}, b_{1}\right)} p_{2}{ }^{\max \left(a_{2}, b_{2}\right)} \cdots p_{n}{ }^{\max \left(a_{n}, b_{n}\right)}$.

Eg. $12=2^{2} \times 3,18=2 \times 3^{2}, \operatorname{lcm}(12,18)=2^{\max (2,1)} \times 3^{\max (1,2)}=2^{2} \times 3^{2}=36$.

Theorem For any integers m and $n, \operatorname{gcd}(m, n) \cdot \operatorname{lcm}(m, n)=m n$.
(Proof)
$\operatorname{gcd}(m, n) \quad \cdot \quad \operatorname{lcm}(m, n) \quad=\quad p_{1}{ }^{\min \left(a_{1}, b_{1}\right)}{p_{2}}^{\min \left(a_{2}, b_{2}\right)} \cdots p_{n}{ }^{\min \left(a_{n}, b_{n}\right)}$
$p_{1}{ }^{\max \left(a_{1}, b_{1}\right)} p_{2}{ }^{\max \left(a_{2}, b_{2}\right)} \cdots p_{n}{ }^{\max \left(a_{n}, b_{n}\right)}$
$=p_{1}{ }^{a_{1}+b_{1}} p_{2}{ }^{a_{2}+b_{2}} \cdots p_{n}{ }^{a_{n}+b_{n}}=m n$.
Eg. $\operatorname{gcd}(12,18) \times \operatorname{lcm}(12,18)=6 \times 36=216=12 \times 18$.

Remainder \boldsymbol{r} of \boldsymbol{b} dividing $\boldsymbol{a}: r=a \bmod b$.
Eg. $12 \boldsymbol{\operatorname { m o d } 5 = 2}$.

Theorem If \boldsymbol{a} and \boldsymbol{b} are nonnegative integers, not both zero, then there exist integers s and t such that $\operatorname{gcd}(a, b)=s a+t b$.
Eg. $\operatorname{gcd}(105,30)=15$, and we have $1 \times 105+(-3) \times 30=15$.

Euclidean Theorem If \boldsymbol{a} is a nonnegative integer, \boldsymbol{b} is a positive integer, and $r=a$ $\bmod b$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
(Proof) $a=b q+r, 0 \leq r<b$.
Let $c \mid a$ and $c \mid b$. And we have $c \mid b q$. Moreover, $c \mid(a-b q=r)$.
Let $c \mid b$ and $c \mid r$. And we have $c \mid b q$. Moreover, $c \mid(b q+r=a)$.
Thus the set of common divisors of a and b is equal to the set of common divisors of b and r. Therefore, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

```
Eg. }\operatorname{gcd}(\mathbf{105,30)=\boldsymbol{gcd}(\mathbf{30,15})=\boldsymbol{gcd}(\mathbf{15,0})=15
```


Euclidean Algorithm

Input: a and b (nonnegative integers, not both zero)
Output: Greatest common divisor of a and b

- $\operatorname{gcd}(a, b)\{$

2. $/ /$ make a largest
3. if $(a<b)$
$\operatorname{swap}(a, b)$
while ($b \neg=0$) \{ $r=a \bmod b$
$a=b$
$b=r$
\}
4. return a
5. \}

8－3 The Pigeonhole Principle（鴿籠原理）

The pigeonhole principle：If \boldsymbol{m} pigeons occupy \boldsymbol{n} pigeonholes and $\boldsymbol{m}>\boldsymbol{n}$ ，then at least one pigeonhole has two or more pigeons roosting in it．

Eg．Let $S \subset Z$ ，and S has 37 elements．Then S contains two elements that have the same remainder upon division by 36.
（Proof）$n=36 q+r, 0 \leqq r<36$ ．There are 36 possible values of r ．
According to the pigeonhole principle，the result is established．

Eg．Any subset of size six from $S=\{1,2,3,4,5,6,7,8,9\}$ must contain two elements

 whose sum is 10 ．（Sol．）The numbers： $1,2,3,4,5,6,7,8,9$ are pigeons．
$\{1,9\},\{2,8\},\{3,7\},\{4,6\},\{5\}$ are pigeonholes．When 6 pigeons go to their respective pigeons，they must fill at least one of the two－element subsets whose members sum to 10.

Eg．Let \boldsymbol{m} be positive and odd．Show that there exists a positive integer \boldsymbol{n} such that \boldsymbol{m} divides $\mathbf{2}^{\boldsymbol{n}} \mathbf{- 1}$ ．
（Proof）Consider $m+1$ integers： $2^{1}-1,2^{2}-1,2^{3}-1, \ldots, 2^{m}-1,2^{m+1}-1$ ．
According to the pigeonhole principle，$\exists 1 \leqq s<t \leqq m+1$ such that $2^{s}-1=q_{1} m+r$ and $2^{t}-1=q_{2} m+r$ ，where $1 \leqq r<m$ ．
$\left(2^{t}-1\right)-\left(2^{s}-1\right)=2^{t}-2^{s}=2^{s}\left(2^{t-s}-1\right)=\left(q_{2}-q_{1}\right) m . \because m$ is odd，$\therefore \operatorname{gcd}\left(2^{s}, m\right)=1$ ．
Hence $m \mid 2^{t-s}-1$ ，and the result follows with $n=t-s$ ．

Eg．An inventory consists of a list of 80 items，each marked＂available＂or ＇unavailable＂．There are 45 available items．Show that there are at least 2 available items in the list exactly $\mathbf{9}$ items apart．
（Proof）Let a_{i} denote the position of the $i^{\text {th }}$ available item．
Consider $a_{1}, a_{2}, a_{3}, \ldots, a_{45}$
and $a_{1}+9, a_{2}+9, a_{3}+9, \ldots, a_{45}+9$ ．

There are 90 numbers those have possible values only from 1 to 89 ．According to the pigeonhole principle，two of the numbers must coincide．Some number in（P1）is equal to some number in（P2）．Therefore，$a_{\mathrm{i}}-a_{\mathrm{j}}=9$ ．

