Chapter 8 Number Theory

8-1 Prime Numbers and Composite Numbers

d divides *n*, *d*|*n*: n=dq, $d (\neq 0)$ is a divisor (factor) of *n*, and *q* is the quotient. Eg. 2|6, 3|108, etc.

Theorem Let *m*, *n*, and *d* be integers. (a) If d|m and d|n, then $d|(m\pm n)$. (b) If d|m, then d|mn. (Proof) (a) $\therefore m=dq_1$ and $n=dq_2$, $\therefore m\pm n=d(q_1\pm q_2)$. (b) m=dq, and then mn=dnq

Prime number: An integer greater than 1 whose only positive divisors are itself and 1.

Eg. 2=1×2, 3=1×3, 5=1×5, 7=1×7, 11=1×11, ... are all prime numbers.

Composite number: An integer greater than 1 that is not prime.

Eg. 4=1×4=2×2, it is a composite number.

Theorem A positive integer *n* greater than 1 is composite if and only if *n* has a divisor *d* satisfying $2 \le d \le \sqrt{n}$.

(Proof) (\Rightarrow): Suppose that *n* is composite, *n* has a divisor *d*' satisfying $2 \le d' \le n$. If $d' \le \sqrt{n}$, then *n* has a divisor d=d' satisfying $2 \le d \le \sqrt{n}$. If $d' > \sqrt{n}$, then n=d'q, Thus *q* is also a divisor of *n*. Suppose that $q > \sqrt{n}$, then

 $n=d^{\circ}q > \sqrt{n} + \sqrt{n} = n$, which is a contradiction. Thus $q < \sqrt{n}$. Therefore, *n* has a divisor d=q satisfying $2 \le d \le \sqrt{n}$.

(\Leftarrow): If *n* has a divisor *d* which satisfies $2 \le d \le \sqrt{n}$, according to the definition of composite number, *n* is composite.

Algorithm Testing whether an integer is prime

```
Input: n

Output: d

is\_prime(n) \{

for d = 2 to \lfloor \sqrt{n} \rfloor

if (n \mod d == 0)

return d

return 0

}
```

Theorem There are infinite prime numbers.

(Sol.) Assume there are only finite prime numbers: $p_1, p_2, p_3, ..., p_n$. Let $m = p_1 p_2 p_3 ... p_n + 1$, so *m* should be a composite number. But *m* can not be factorized into the product of $p_1, p_2, p_3, ...,$ and p_n . It should be a prime number. They are contradictory to each other. Hence, there are infinite prime numbers.

8-2 GCD and LCM

The greatest common divisor (gcd): Let $m = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$ and $n = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$,

then $gcd(m,n) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)}$. Eg. 12=2²×3, 18=2×3², $gcd(12,18)=2^{\min(2,1)}\times 3^{\min(1,2)}=2\times 3=6$.

The least common multiple (*lcm*): Let $m = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$ and $n = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$,

then $lcm(m,n) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)}$.

Eg. $12=2^2\times 3$, $18=2\times 3^2$, $lcm(12,18)=2^{max(2,1)}\times 3^{max(1,2)}=2^2\times 3^2=36$.

Theorem For any integers *m* and *n*, $gcd(m,n) \cdot lcm(m,n)=mn$. (Proof)

gcd(m,n) · lcm(m,n) = $p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)}$

$$p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)}$$

$$= p_1^{a_1+b_1} p_2^{a_2+b_2} \cdots p_n^{a_n+b_n} = mn.$$

Eg. $gcd(12,18) \times lcm(12,18) = 6 \times 36 = 216 = 12 \times 18$.

Remainder *r* **of** *b* **dividing** *a***:** *r*=*a* mod *b*. **Eg. 12 mod 5=2.**

Theorem If a and b are nonnegative integers, not both zero, then there exist integers s and t such that gcd(a,b)=sa+tb. Eg. gcd(105,30)=15, and we have $1\times105+(-3)\times30=15$. Euclidean Theorem If *a* is a nonnegative integer, *b* is a positive integer, and $r=a \mod b$, then gcd(a,b)=gcd(b,r). (Proof) a=bq+r, $0 \le r < b$. Let $c \mid a$ and $c \mid b$. And we have $c \mid bq$. Moreover, $c \mid (a-bq=r)$. Let $c \mid b$ and $c \mid r$. And we have $c \mid bq$. Moreover, $c \mid (bq+r=a)$. Thus the set of common divisors of *a* and *b* is equal to the set of common divisors of *b* and *r*. Therefore, gcd(a,b)=gcd(b,r). Eg. gcd(105,30)=gcd(30,15)=gcd(15,0)=15

Euclidean Algorithm

Input: *a* and *b* (nonnegative integers, not both zero) Output: Greatest common divisor of *a* and *b*

1. gcd(a,b) { // make a largest 2. 3. if (a < b)4. swap(a,b)5. while $(b \neg = 0)$ { 6. $r = a \mod b$ 7. a = b8. b = r9. } return a 10. 11. }

8-3 The Pigeonhole Principle (鴿籠原理)

The pigeonhole principle: If *m* pigeons occupy *n* pigeonholes and m>n, then at least one pigeonhole has two or more pigeons roosting in it.

Eg. Let $S \subset Z$, and *S* has 37 elements. Then *S* contains two elements that have the same remainder upon division by 36.

(Proof) n=36q+r, $0 \le r < 36$. There are 36 possible values of *r*.

According to the pigeonhole principle, the result is established.

Eg. Any subset of size six from $S=\{1,2,3,4,5,6,7,8,9\}$ must contain two elements whose sum is 10.

(Sol.) The numbers: 1,2,3,4,5,6,7,8,9 are pigeons.

{1,9}, {2,8}, {3,7}, {4,6}, {5} are pigeonholes. When 6 pigeons go to their respective pigeons, they must fill at least one of the two-element subsets whose members sum to 10.

Eg. Let *m* be positive and odd. Show that there exists a positive integer *n* such that *m* divides 2^{n} -1.

(Proof) Consider m+1 integers: $2^{1}-1$, $2^{2}-1$, $2^{3}-1$, ..., $2^{m}-1$, $2^{m+1}-1$.

According to the pigeonhole principle, $\exists 1 \leq s \leq t \leq m+1$ such that $2^{s} - 1 = q_1 m + r$ and $2^{t} - 1 = q_2 m + r$, where $1 \leq r \leq m$.

 $(2^{t}-1)-(2^{s}-1)=2^{t}-2^{s}=2^{s}(2^{t-s}-1)=(q_{2}-q_{1})m$. \therefore *m* is odd, \therefore $gcd(2^{s},m)=1$. Hence $m \mid 2^{t-s}-1$, and the result follows with n=t-s.

Eg. An inventory consists of a list of 80 items, each marked "available" or 'unavailable". There are 45 available items. Show that there are at least 2 available items in the list exactly 9 items apart.

(Proof) Let a_i denote the position of the i^{th} available item. Consider $a_1, a_2, a_3, ..., a_{45}$

and a_1+9 , a_2+9 , a_3+9 , ..., $a_{45}+9$.

(P2)

(P1)

There are 90 numbers those have possible values only from 1 to 89. According to the pigeonhole principle, two of the numbers must coincide. Some number in (P1) is equal to some number in (P2). Therefore, a_i - a_i =9.